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Nominally second-order cell-centered and node-centered approaches are compared for unstructured finite

volume discretization of inviscid fluxes in two dimensions. Three classes of grids are considered: isotropic grids in a

rectangular geometry, anisotropic grids typical of adapted grids, and anisotropic grids over a curved surface typical

of advancing-layer grids. The classes contain regular and irregular grids, including mixed-element grids and grids

with random perturbations of nodes. Complexity, accuracy, and convergence of defect-correction iterations are

studied. Deficiencies of specific schemes, such as instability, accuracy degradation, and/or poor convergence of

defect-correction iterations, have been observed in computations and confirmed in analysis. All schemes may

produce large relative gradient-reconstruction errors on grids with perturbed nodes. On advancing-layer grids, a

local approximate-mapping technique based on the distance function restores gradient-reconstruction accuracy and

fast convergence of defect-correction iterations. Among the considered scheme, the best cell-centered and

node-centered schemes, which are low-complexity, stable, robust, and uniformly second-order-accurate, are

recommended.

Nomenclature

A, B, C, D,
E, F, G, H,
I, J, K, L

= primal cell centers

A = aspect ratio
a, b = reconstructed gradient components
a = velocity vector
Ed = discretization error
Erel = relative gradient error
f = forcing function
h = local mesh size
hr, h� = radial and circumferential mesh spacing,

respectively
hx, hy = Cartesian mesh sizes in x and y directions,

respectively
ĥy = minimal mesh spacing on stretched grids
L = characteristic scale of domain
Lhd = linearized driver scheme
N = total number of mesh points
n = outward directed-area vector
n̂, t̂ = unit vectors normal and tangential to the

boundary, respectively
�n = outward unit normal vector
Nx, Ny = number of grid points in x and y directions,

respectively
R = radius of curvature
r, � = polar coordinates

r = coordinate vector
r� = point on boundary closest to field point r
Rh �� � = discrete residual
s = distance to designated boundary
�s = small horizontal node perturbation
sf = distance from face center to closest boundary
U = exact solution
UL, UR = left and right solution reconstructions
Uh = discrete solution
Ur = linear solution reconstruction
uh = approximate discrete solution
V = measure of control volume
vh = correction to approximate discrete solution
x, y = Cartesian coordinates
� = stretching factor
� = curvature-induced grid deformation parameter
�k = weights in least-squares minimization
�, � = local coordinates
� = random number 2 ��1; 1�
�, @� = control volume and control-volume boundary,

respectively
0, 1, 2, 3, 4,
5, 6, 7, 8, 9,
10, 11, 12

= grid nodes

r = gradient operator
rr = reconstructed gradient
j � j = vector length
k � k = norm of interest, e.g., L1 or L1

Subscripts

numerals = stencil points
f = face center

I. Introduction

B OTH node-centered (NC) and cell-centered (CC) finite volume
discretization (FVD) schemes are widely used for complex

three-dimensional (3-D) turbulent-flow simulations in aerospace
applications. The relative advantages of the two approaches have
been extensively studied [1–3] in the search for methods that are
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accurate, efficient, and robust over the broadest possible range of grid
and solution parameters, but a consensus has not emerged. One of the
difficulties in assessing the two approaches is that comparative
calculations were not completed in a controlled environment; that is,
computations were made with different codes and different degrees
of freedom, and the exact solutions were not known.

In this paper, a subset of the discretization elements needed in
turbulent-flow simulations, namely, that of the inviscid discretiza-
tion, is studied in a controlled environment. This paper is the second
in a series of papers comparing CC andNC finite volume schemes. It
follows a previous study [3] that considered viscous discretizations.
The ultimate objective of the effort is to identify methods suitable for
a uniformly second-order-accurate and efficient unstructured-grid
solver for the Reynolds-averaged Navier–Stokes equations.

In this work, a linear convection equation,

a � rU� f� � (1)

serves as a model for inviscid fluxes. Here, a is a constant velocity
vector and f is a forcing function. The method of manufactured
solution is used, so the exact solutions are known and chosen to be
smooth on all grids considered; that is, no accuracy degradation
occurs because of a lack of solution smoothness. Computational
studies are conducted on two-dimensional (2-D) grids ranging from
structured (regular) grids to irregular grids composed of arbitrary

mixtures of triangles and quadrilaterals. Highly irregular grids are
deliberately constructed through random perturbations of structured
grids to bring out the worst possible behavior of the solution. Three
classes of grids are considered. Class (A) involves isotropic grids in a
rectangular geometry. Class (B) involves highly anisotropic grids,
typical of those encountered in grid adaptation. Class (C) involves
advancing-layer grids varying strongly anisotropically over a curved
body, typical of those encountered in high-Reynolds-number
turbulent-flow simulations.

Eight nominally second-order schemes are considered: two
representative NC schemes with weighted least-squares (WLSQ)
and unweighted least-squares (ULSQ) methods for gradient recon-
struction and six CC schemes. The CC schemes include node-
averaging (NA) schemes, with and without clipping, and four
least-squares gradient reconstruction schemes that are named
according to the stencil used for the least-squares fit: a nearest-
neighbor (NN) scheme using only face-neighboring cells, a smart-
augmentation (SA) scheme moderately augmenting the NN stencil,
and two full augmentation (FA) schemes, with and without
weighting, using larger stencils (including all node-sharing cells).
For the grids of class (C), the approximate-mapping (AM) technique
[3] is used to improve gradient reconstruction accuracy and
convergence of defect-correction iterations (DCIs). The technique is
based on the distance function (the distance from a field point to the
nearest surface) commonly available in practical codes and can be

a) Type (I): regular
quadrilateral grid

b) Type (II): regular
triangular grid

c) Type (III): random
triangular grid

d) Type (IV): random
mixed grid

e) Type (Ip): perturbed
quadrilateral grid

f) Type (IIp): perturbed
triangular grid

g) Type (IIIp): perturbed
random triangular grid

h) Type (IVp): perturbed
random mixed grid

Fig. 1 Typical regular and irregular grids.

Table 1 Acronyms used for identification of discretization schemes

Acronym Description

AM Approximate mapping can be applied on grids of class (C) with any scheme. In this paper, AM is used in NC-ULSQ-AM,
CC-NN-AM, CC-FAULSQ-AM, and CC-SA-AM schemes.

CC Cell-centered discretization uses primal grid cells as control volumes.
CLIP Clipping can be used in conjunction with CC-NA schemes.
EG Exact gradient can be applied for CC discretizations and used in reconstruction for reference.
FA Full-augmentation stencil can be applied only for CC discretizations. FA indicates that the stencil for least-squares gradient

reconstruction at a cell is large and involves all cells sharing a node with the considered cell.
NA Node averaging can be applied only for CC discretizations. Solutions are first reconstructed at nodes using an averaging

procedure.
NC Node-centered discretization uses median-dual cells as control volumes.
NN Nearest-neighbor stencil can be applied only for CC discretizations. NN indicates that the stencil for least-squares gradient

reconstruction at a cell is small and involves only neighboring cells sharing a face with the considered cell.
SA Smart-augmentation stencil can be applied only for CC discretizations. SA indicates that the stencil for least-squares

gradient reconstruction is a small subset of the FA stencil and moderately larger than the NN stencil.
ULSQ Unweighted least-squares gradient reconstruction employs a least-squares minimization problem with a cost functional that

uses unweighted (equal) contributions from all stencil points. In this paper, the following schemes use the ULSQ method:
NCULSQ, CC-FA-ULSQ, CC-SA, and CC-NN.

WLSQ Weighted least-squares gradient reconstruction employs a least-squares minimization problem with a cost functional that
uses weighted contributions from stencil points. The weights are inversely proportional to the squared distances to the
stencil center. In this paper, the NC-WLSQ and CC-FA-WLSQ schemes use the WLSQ method.
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used with any scheme. Individual schemes are identified by a
combination of acronyms shown in Table 1.

The properties to be compared in this study are computational
complexity (operation count), discretization accuracy, and conver-
gence rates of the defect-correction method with a first-order driver.
The material in this paper is presented in the following order.
Section II introduces the computational grids used in the current
study. A brief explanation of finite volume discretizations in Sec. III
is followed by the estimates of discretization complexity for 2-D and
3-D grids in Sec. IV. Section Voutlines the analysis methods used in
this study. Section VI contains results on the accuracy of finite
volume solutions and gradients, and on convergence rates of the
defect-correction method observed on grids of class (A). Section VII
compares the finite volume discretizations on grids of class (B).
SectionVIII provides comparisons on grids of class (C). Conclusions
and recommendations are offered in Sec. IX. Detrimental effects of
clipping on the accuracy of the CC-NA scheme are shown in
Appendix A. Appendix B analyzes the instability of finite volume
schemes with WLSQ gradient reconstruction on high-aspect-ratio
grids with small perturbations.

II. Grids

This paper studies FVD schemes for inviscid fluxes on regular and
irregular grids classified in [3]. Four basic grid types are considered:
(I) regular quadrilateral (i.e., mapped Cartesian) grids; (II) regular
triangular grids derived from the regular quadrilateral grids by the
same diagonal splitting of each quadrilateral; (III) random triangular
grids, in which regular quadrilaterals are split by randomly chosen
diagonals, each diagonal orientation occurring with a probability of
half; and (IV) random mixed-element grids, in which regular quad-
rilaterals are randomly split or not split by diagonals (the splitting
probability is half; in the case of splitting, each diagonal orientation is
chosenwith the probability of half). Nodes of any basic-type grid can
be perturbed from their initial positions by random shifts, thus
leading to four additional perturbed grid types that are designated by
the subscript p as (Ip)–(IVp). The random node perturbation in each
dimension is typically defined as 1

4
�h, where � 2 ��1; 1� is a random

number and h is the local mesh size along the given dimension. The
representative grids are shown in Fig. 1.

Our main interest is the accuracy and efficiency of FVD schemes
on general irregular grids with a minimum set of constraints. In
particular, grid smoothness is not required, neither on individual
grids nor in the limit of grid refinement. The only major requirement
for a sequence of refined grids is to satisfy the consistent refinement
property [4]. The effective mesh size is computed on each grid as the
L1 norm of the square root of the control volumes.

The discrete solutions are available at locations called data points.
For consistency with the 3-D terminology, the 2-D control-volume
boundaries are called faces, and the term edge refers to a line,
possibly virtual, connecting the neighboring data points. Each face is
characterized by the directed-area vector, which is directed
outwardly normal to the face with the magnitude equal to the face
area.

III. Finite Volume Discretization Schemes

The FVD schemes are derived from the integral form of a
conservation law:

I
@�

U a � �n ds�
Z
�

f d�

� �
(2)

where� is a control volumewith boundary @�, �n is the outward unit
normal vector, and ds is the area differential. The general FVD
approach requires partitioning the domain into a set of non-
overlapping control volumes and numerically implementing Eq. (2)
over each control volume. The control volumes used for NC
formulations are referred to as dual cells to distinguish them from
primal cells used as control volumes in CC formulations.

CC discretizations assume solutions are defined at the centers of
the primal cells. The cell center coordinates are typically defined as
the averages of the coordinates of the cell’s vertexes. Note that, for
quadrilateral cells, cell centers are not necessarily centroids. NC
discretizations assume solutions are defined at the primal mesh
nodes. For NC schemes, control volumes are constructed around the
mesh nodes by the median-dual partition: the centers of primal cells
are connected with the midpoints of the surrounding faces. These
nonoverlapping control volumes cover the entire computational
domain and compose amesh that is dual to the primalmesh. Both CC
and NC control-volume partitions are illustrated in Fig. 2; 0–12 and
A-L denote grid nodes and primal cell centers, respectively. The
control volume (dual cell) for a NC discretization around grid node 0
is shaded. The control volume (primal cell) for a CC discretization
around cell center A is hashed.

The flux, Uh a � �n� �, at a control-volume face is computed
according to the flux-difference-splitting scheme [5]:

Uh a � �n� 1
2
UL 	UR a � �n � 1

2
j a � �nj UR � UL� �� �

� �� �� �
(3)

where first and second terms represent the flux average and the
dissipation, respectively; UL and UR are the left and right solutions
linearly reconstructed at the face by using solutions defined at the
control-volume centers and solution gradients reconstructed at each
control volume. Various FVD schemes differ in the way they
reconstruct gradients at the control volumes.

For CC schemes, the face-based flux integration over a control-
volume face is approximated as the flux computed at the face center
multiplied by the face area. The integration scheme is second-order
accurate on grids of all types.

For NC schemes, the edge-based flux integration scheme
approximates the integrated flux through the two faces linked at an
edge midpoint byUh a � n� �, computed at the edge midpoint where n
is the combined-directed-area vector. The integration scheme is
computationally efficient and second-order accurate on regular
quadrilateral and simplicial grids: types (I), (II), (III), (IIp), and (IIIp).
The integration accuracy degenerates to first order onmixed-element
and perturbed quadrilateral grids of types (IV), (IVp), and (Ip)
[4,6,7]. Note that NC face-based integration schemes that avoid
accuracy degradation can be constructed but at a higher cost [7] (see
also estimates in Sec. IV).

The forcing term integration over the cell is approximated as the
value at the cell center multiplied by the cell volume:

V �
Z
�

d� (4)

This approximation is locally second-order accurate when the cell
center coincides with the centroid. On general irregular grids, the cell
center is not necessarily the centroid, and the approximation becomes
locally first-order accurate. However, with grid irregularities intro-
duced locally and randomly (thus, implying a zero-mean distribution
of the deviations between cell centers and centroids), the integral of
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Fig. 2 Control volume partitioning for finite-volume schemes.
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the forcing term over any subdomain of size O 1� � is approximated
with second order.

The specific schemes presented in the following sections are either
representative of the schemes used in the state-of-the-art industrial
codes or new developments promising significant improvements in
solution accuracy, efficiency, and/or robustness.

A. Cell-Centered Schemes

1. Node-Averaging Schemes

In CC-NA schemes, solution values are first reconstructed at the
nodes from the surrounding cell centers. With respect to Fig. 2, the
solution at node 0 is reconstructed by averaging solutions defined at
the cell centers A, B, and C. The commonly used solution
reconstruction [8–10] is an averaging procedure that is based on a
constrained optimization to satisfy some Laplacian properties. The
scheme is second-order accurate and stable when the coefficients of
the introduced pseudo-Laplacian operator are close to unity. It has
been shown [11] that this averaging procedure is equivalent to an
ULSQ linear fit.

The gradient of the solutionU at the cell� is reconstructed by the
Green–Gauss formula:

rU� 1

V

I
@�

U �n ds (5)

For second-order accuracy, the solution at a face is computed by
averaging thevalues at the face nodes, and the integral over the face is
approximated by the product of the solution and the face directed
area. For simplicial grids, an explicit formula relating the gradient to
the nodal solution values is given elsewhere [10].

On highly stretched and deformed grids, some coefficients of the
pseudo-Laplacian may become negative or larger than two, which
has a detrimental effect on stability and robustness [12,13]. Holmes
and Connell [8] proposed to enforce stability by clipping the
coefficients between zero and two. TheCC-NA schemewith clipping
(CC-NA-CLIP) represents a current standard in practical computa-
tional fluid dynamics codes involving CC finite volume formulations
[14]. As shown further in the paper, clipping seriously degrades the
accuracy of the solution.

2. Least-Squares Schemes

An alternative approach relies on a least-squares method for
gradient reconstruction, in which the linear approximation obtained
at a control volume coincides with the solution value at the control-
volume center. In this paper, both WLSQ and ULSQ methods are
considered. In theWLSQmethod, the contributions to theminimized
functional are weighted, with weights inversely proportional to the
distance from the control-volume center. In the unweighted method,
all contributions are equally weighted.

The complexity, accuracy, and robustness of the solvers using a
least-squares method for gradient reconstruction may vary, de-
pending on the choice of the stencils for the least-squares mini-
mization. Below, three types of stencils are considered. The NN
stencil includes only centers of face-neighbor cells. The FA stencil
includes all the cells that share a vertex with the given cell: i.e., all the
cells involved in CC-NA gradient reconstruction. The SA stencil
employs only a small portion of the cells used in the corresponding
FA stencil. The data point of the central cell is also referred to as the
stencil center.

Defect-correction iterations with a first-order driver are widely
used for solution of FVD schemes. It has been observed that defect-
correction iterations may become slow or even diverge for the CC-
NN scheme, but the defect-correction iteration rates are always fast
for the CC-FA-ULSQ scheme. This observation motivated the
development of the CC-SA scheme with low complexity and fast
defect-correction iteration rates.

The version of the CC-SA scheme used in this paper has been
chosen for simplicity of implementation. It uses a predefined small-
size augmentation and applies augmentation to all gradient stencils.
Initially, the SA stencil associated with a cell is identical to the NN

stencil. The initial stencil is augmented with a few cells, one added
cell per vertex. For each cell vertex, the cell added to the SA gradient
stencil is the most distant from the stencil center of all the cells
surrounding the vertex. The CC-SA stencil size approximately
doubles the stencil size of the CC-NN scheme, but it is much smaller
than the CC-FA stencil size. Addition of the most distant cells is
guided by the observation that the distant points carry most of the
weight in theULSQgradient reconstructionwhen the obtained linear
approximation coincides with the solution value at the stencil center.
For cell centerA in Fig. 2, the NN stencil includes neighborsB,C,D,
and E; the SA stencil adds neighborsH, I, and L; and the FA stencil
includes (additionally) neighbors F, G, J, and K.

The complexity of the CC-SA scheme can be further reduced with
an appropriate test performed in local computational windows. In
[15], a simple test based on a single-cell computational window was
applied to optimize the stencil size. This single-cell approach was
efficient for many computations, but it has been recently found to not
be sufficiently robust. Alternative tests with larger computational
windows have been found to be sufficiently robust, but they are not
pursued in this paper.

B. Node-Centered Schemes

For the NC computations, the current standard employs a least-
squares gradient reconstruction. The typical stencil at a control
volume involves all nodes linked by an edge. For example, with
reference to Fig. 2, the least-squares fit for the shaded control volume
centered at node 0 includes nodes 1, 2, and 4. BothWLSQandULSQ
methods are evaluated.

C. Approximate-Mapping Method

A general approximate-mapping method has been introduced in
[3]. The method constructs a local mapping based on a distance
function that supplies the distance from a field node to designated
boundaries that is readily available in practical codes. The
approximate-mapping method applies the least-squares minimiza-
tion in a local coordinate system �; �� �, where � is the coordinate
normal to the boundary and � is the coordinate parallel to the
boundary (see sketch in Fig. 3). At each control volume, the unit
vector normal to the boundary n̂0 is constructed as

n̂ 0 � r0 � r�0=jr0 � r�0 j
� �

(6)

where the position of the control-volume center is denoted as r0 and
the position of the closest point on the boundary is denoted as r�0 . The
unit vector normal to n̂0 is denoted as t̂0. To construct the least-
squaresminimization at the control volume, the local coordinates of a
stencil point ri are defined as

�i � ri � r0 � t̂0
� �

(7)

�i � si � s0� � (8)

Fig. 3 Sketch of coordinate system used in the approximate-mapping

method.
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where si approximates the distance function at location ri. In the
current version, the distance function is always defined at mesh
nodes. For CC schemes, the distance function at the cell center is
calculated by averaging the distance functions defined at cell
vertexes. Thus, the � coordinate corresponds to the distance from the
boundary, and the � coordinate is the projection onto the plane
parallel to the surface at r0. The least-squares minimization yields
gradients in the �; �� � directions or, equivalently, through a
coordinate rotation in the x; y� � Cartesian directions.

To reconstruct an interior state for the flux computation at a
control-volume face location rf the coordinates associated with the
mapping at r0 are introduced as

�0f � rf � r0 � t̂0
� �

(9)

�0f � sf � s0
� �

(10)

The coordinate sf is approximated as

sf � s0 	 s1=2� � (11)

where, for NC schemes, s0 and s1 correspond to the distance function
of the two nodes defining the edge; for CC schemes, s0 and s1
correspond to the nodes defining the face. The interior state is linearly
reconstructed using the state at r0 and gradients in the �; �� �
directions.

IV. Complexity

In this section, the complexity of FVD schemes is evaluated per
degree of freedom.On a given grid, CC schemes typically havemany
more degrees of freedom than NC schemes.

A. Flux Integration Complexity

In this section, the complexity associated with flux integration in
3-D is estimated. The complexity is measured as the number of flux-
reconstruction instances required for one residual evaluation. Flux
reconstructions are the main contributors to the operation counts
associated with flux integration. Three types of primal meshes are
considered: 1) fully tetrahedral, 2) fully prismatic, and 3) fully
hexahedral.

An underlying Cartesian grid is considered and split into the
various elements. The splitting into tetrahedra assumes each
hexahedral cell defined by the grid is split into five tetrahedra, with
one of the tetrahedra being completely interior to the hexahedral cell
(i.e., its faces are not aligned with any of the hexahedral-cell faces;
see Fig. 4). Other partition strategies are possible but not considered.

Table 2 shows complexity estimates for one CC and two NC FVD
schemes. Only interior discretizations are estimated as boundary
effects are neglected. The CC formulation uses a face-based flux
integration schemewith one flux reconstruction per control face. The
NC schemes assume a median-dual partition of the domain and use
both an edge-based and a face-based flux integration.

In a median-dual partition, the constituent dual control volumes
are bounded by generally nonplanar dual faces formed by connecting
three types of points: 1) edge midpoints, 2) element-face centroids,
and 3) element centroids. The edge-based flux integration approx-
imates integration over all of the constituent dual faces adjacent to an
edge by a product of the flux evaluated at the edge midpoint and a
lumped directed area. The face-based flux integration multiplies
fluxes reconstructed at each of the constituent dual faces with the
corresponding local directed areas. For the present estimation, each
flux-reconstruction instance requires the same operation count.

Two estimates of complexity are given. The first estimate assumes
that any constituent quadrilateral face in the control surface is broken
into two triangular faces. The second estimate (in parentheses)
assumes any constituent quadrilateral face is approximated as planar.
The former is required to ensure a precise (watertight) definition of
the control surface and can serve as a measure of the complexity in
integration of the physical flux terms. The latter can serve as an
estimate of the complexity associated with numerical dissipation
terms, in which details of the control surface can be neglected.

The complexities of CC and NC edge-based-flux-integration
schemes are reasonably close. Unfortunately, as shown in this paper
and previously [4,6,7], the accuracy of NC edge-based-flux-
integration schemes degenerates to first order on perturbed quadri-
lateral and general mixed-element grids. To maintain second-order
accuracy on general grids, one can employ the NC scheme with a
face-based flux integration, but the integration complexity of this
formulation substantially exceeds the complexity of the CC scheme.
These results are in agreement with the observations made by
Delanaye and Liu [1], leading to their selection of a CC dis-
cretization.

B. Size of Inviscid Stencil

Another important measure of complexity of an FVD scheme is
the size of the full-linearization stencil. The size of the 2-D and 3-D
full-linearization stencils is examined for inviscid CC and NC FVD
schemes. Cartesian meshes are split into triangular and tetrahedral
elements, as in the previous section, again neglecting boundary
effects. Estimates of the stencil complexity are compared with

Fig. 4 Splitting of a hexahedral cell into five tetrahedra.

Table 2 Number offlux-reconstruction instances per equation forFVD

schemes with precise (watertight) definition of the control-volume

boundary; in parentheses: the number of flux-reconstruction instances
with planar approximations to the control-volume boundary

Elements CC face-based
flux integration

NC edge-based
flux integration

NC face-based
flux integration

Tetrahedral 4 (4) 12 120 (60)
Prismatic 8 (5) 8 72 (36)
Hexahedral 12 (6) 6 48 (24)

Table 3 Average size of the inviscid

first-order FVD stencil on triangular/

tetrahedral grids in 2-D/3-D

Elements NC CC

Estimate 2-D 7 4
Estimate 3-D 13 5
Numerical 3-D 14 5

Table 4 Average size of the inviscid second-

order stencil for 2-D/3-D discretizations with
triangular/tetrahedral elements

Elements NC CC-NA CC-NN CC-SA

Estimate 2-D 23 25 9 18
Estimate 3-D 75 139 15 28
Numerical 3-D 63 118 15 27
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numerical calculations on an actual 3-D grid that includes boundary
effects. The grid is a fully tetrahedral grid composed of 16,391 nodes.

For the inviscid discretization, the DCI with a first-order driver is
generally used to converge the residual. Thus, it is important to
consider first-order and second-order linearizations. For the first-
order CC FVD scheme, the size of the linearization stencil is simply
the number of faces plus one (to account for the central node). For the
first-order NCdiscretization, the size of the linearization stencil is the
number of edges connecting to a node plus one. Table 3 shows 2-D
and 3-D linearization stencil sizes. TheCC discretization has nearly a
factor of three smaller stencil in 3-D.

For second-order accuracy, all schemes reconstruct gradients in
the control volumes. The NC discretizations use a least-squares
approach and require solutions at the neighbor and neighbor-of-
neighbor nodes and a correspondingly large linearization stencil.
The CC-NA discretizations have even larger linearization stencils
that include all cells contributing to solution reconstruction at any
node of a face-neighboring cell. Stencils of CC-FA discretizations
are the same as CC-NA stencils. The CC-NN discretization
requires a much smaller stencil that includes only face-neighbor
and neighbor-of-neighbor cells. The CC-SA least-squares stencil
includes, additionally, one cell per vertex and approximately doubles
the size of the CC-NN stencil. Table 4 shows stencil sizes for 2-D and
3-D. The splittings used in the estimates are shown in Figs. 4 and 5
for 3-D and 2-D, respectively. In 3-D, the CC-SA discretization
stencil is more than two times smaller than the NC discretization
stencil; the latter, in turn, is significantly smaller than the CC-NA and
CC-FA discretization stencils. In both 2-D and 3-D, the CC-NN
discretization stencil is the smallest.

For illustration, the 2-D stencils for a single shaded control volume
are shown in Fig. 5 for each approach. The stencil sizes are 25, 25, 9,
and 18 for the NC, CC-NA, CC-NN, and CC-SA schemes,
respectively. Note that the stencil size for theNC control volumewith
four edges adjacent to the shaded one shown in Fig. 5 is 21; thus, the
average of 23 is shown in Table 4.

For 3-D NC schemes, the nodes with 6 and 18 edges have stencil
sizes of 57 and 93, respectively. Thus, the average of 75 is shown in
Table 4. For the CC-NA and CC-FA schemes, the cells at the corners
of the original Cartesian cell have a stencil size of 149, and those fully
interior to the original Cartesian cell have a stencil size of 99. Since
there is one interior tetrahedron for each of the four corner
tetrahedrons, the average of 139 is shown in Table 4. The CC-SA
stencil on an interior tetrahedron adds 12 to 15 cells of the CC-NN
stencil, resulting in the 27-cell CC-SA stencil. For a corner
tetrahedron, the CC-SA stencil includes 13 additional cells and has
28 cells in total. Thus, the rounded average of 28 is shown for the CC-
SA scheme in the table. The stencil complexity observed on realistic
computational grids is shown in the last row of Table 4 and is
reasonably close to the corresponding estimates.

V. Analysis

The accuracy of FVD schemes is analyzed for known exact or
manufactured solutions. The forcing function and boundary values
are found by substituting this solution into the governing equations,
including boundary conditions. The discrete forcing function is
defined at the data points. Boundary conditions are overspecified;

that is, discrete solutions at boundary control volumes and at their
neighbors are specified from the manufactured solution.

A. Discretization Error

Themain accuracymeasure is the discretization errorEd, which is
defined as the difference between the exact discrete solutionUh of the
discretized Eq. (2) and the exact continuous solution U to the
corresponding differential equations:

Ed �U � Uh (12)

where U is sampled at data points.
Discretization errors measured on specific grids may depend on

particular irregularity patterns. To account for this dependence, all
numerical tests are performed stochastically; that is, several grids
(ten) with different irregularity patterns are independently generated
on each scale (same number of nodes). In all tests, where thevariation
of a discretization error norm for the same scale is significant, the
mean error as well as the maximum and the minimum errors are
shown.

B. Accuracy of Gradient Reconstruction

The accuracy of the gradient approximation at a control volume is
also important. For second-order convergence of discretization
errors, the gradient accuracy is usually required to be at least first
order. For each control volume, the accuracy of the gradient is
evaluated by comparing the reconstructed gradient rrU with the
exact gradient rU computed at the control-volume center. The
gradient reconstruction uses a discrete representation (usually
injection) of the exact solution U at the data points on a given grid.
The accuracy of the gradient reconstruction is measured as the
relative gradient error:

Erel �
k�gk
kgk (13)

where functions �g and g are the amplitudes of the gradient error and
the exact gradient, respectively, evaluated at control-volume centers:

�g � jrrU � rUj; and g� jrUj (14)

k � k is a norm of interest. In this paper, the gradient errors are
measured only at fully interior control volumes.

C. Convergence of Defect-Correction Iterations

Besides accuracy, an important quality of a practical discretization
is the availability of an affordable solver. For FVD schemes with low
complexity, such as CC-NN and CC-SA, an efficient solution
method would directly iterate the target FVD scheme. For FVD
schemes with high complexity, such as CC-NA, CC-FA, and NC
schemes, direct iterations are not affordable. DCI schemes with
linearized first-order drivers are common methods used in practical
computations.

Let uh be the current solution approximation. The DCI method is
defined in the following two steps:

a) NC scheme b) CC-FA and CC-NA 
schemes

c) CC-NN scheme d) CC-SA scheme

Fig. 5 Inviscid 2-D stencil for the shaded control volume.
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1) The correction vh is calculated from

Lhdv
h � Rh uh

� �
(15)

where Rh uh
� �

is the residual of the target FVD scheme and Lhd is a
driver scheme. Equation (15) is solved to zero residual.

2) The current approximation is corrected:

uh � uh 	 vh (16)

The DCI method considered in this paper is applied to second-order
FVD schemes and uses the corresponding first-order upwind FVD
scheme as a driver. In DCI tests, the forcing term and the boundary
conditions are set to zero, so the exact solution is zero. The initial
solution perturbation is random.

The DCI asymptotic convergence rate is estimated as either the
spectral radius of theDCImatrix on a given (small) grid or as the ratio
of residuals obtained in the two last iterations performed. Note that
convergence observed in individual iterations may significantly
differ from the corresponding asymptotic convergence rate. On one
hand, the initial convergence is typically fast and, in some cases, the
residual tolerance (e.g., machine zero) can be achieved before
convergence slows down to the asymptotic rate. On the other hand,
some norms of the iterationmatrix (e.g., maximum sum of row-entry
absolute values) are much larger than the spectral radius, allowing
slower convergence rates, or even divergence in individual iterations.

VI. Class (A): Isotropic Grids
in Rectangular Geometry

A. Grid Specification

Grids of types (IIIp) and (IVp) are chosen to represent isotropic
grids of poor quality. Sequences of consistently refined grids are
generated on the unit square �0; 1� 
 �0; 1�. Irregularities are intro-
duced at each grid independently, so the grid metrics, such as cell
volumes and face areas, remain discontinuous on all the grids. The
ratio of the neighboring cell volumes can be arbitrarily high. TheCC-
NA-CLIP scheme clips about 10 and 3% of the interior nodes on
grids of types (IIIp) and (IVp), respectively.

B. Gradient Reconstruction Accuracy

On unperturbed isotropic grids of types (I)–(IV) and on perturbed
quadrilateral grids of type (Ip), all gradient reconstruction methods
provide at least first-order-accurate gradients. Figure 6 shows the
convergence of the L1 norms of relative gradient errors for the
manufactured solutionU�� cos 2�x � �y� � on grids of types (IIIp)
and (IVp). Only errors computed with the CC-NA-CLIP scheme do
not converge in grid refinement. Similar absence of convergence has
been observed and reported previously [3] for gradients recon-
structedwith the CC-NA-CLIP schemewithin control-volume faces.
All other methods provide first-order gradient approximations on all
isotropic grids.
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Fig. 6 Accuracy of gradient reconstruction on isotropic irregular grids. Manufactured solution is U �� cos�2�x � �y�.
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Fig. 7 Convergence of L1 norms of discretization errors on isotropic irregular grids. Manufactured solution is U �� cos�2�x � �y�. The convection
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C. Convergence of Discretization Errors

Discretization errors of all CC schemes, except the CC-NA-CLIP
scheme, converge with second order on grids of all types, and the
errors of the NC schemes converge with second order on grids of
types (I)–(III), (IIp), and (IIIp). As predicted in [4,7], discretization
errors of NC schemes on perturbed quadrilateral and mixed-element
grids converge with first order. The reason for this convergence
degradation is the edge-based flux integration scheme, which is
second-order accurate on simplex (triangular and tetrahedral) grids
but only first-order accurate on perturbed quadrilateral and general
mixed-element grids.

Figure 7 shows convergence of the L1 norms of discretization
errors for the manufactured solutionU�� cos 2�x � �y� � on grids
of types (IIIp) and (IVp). The convection direction is a�
�cos 7�

16
; sin 7�

16
�

� �� �
. The deviations of discretization errors observed in

stochastic runs on grids with the same number of nodes are very
small, so the error bounds are not shown. Although barely dis-
cernible, convergence of the discretization errors of the CC-NA-
CLIP scheme deteriorates on finer grids. Detailed tests performed on
finer grids and reported in Appendix A show that the discretization
error convergence deteriorates to first order. Although not shown, the
convergence of the L1 norms of the CC-NA-CLIP scheme exhibits
signs of deterioration on coarser grids. For other schemes,
convergence slopes are the same for all norms and do not change on
finer grids.

The second-order discretization errors differ by less than an order
of magnitude at a given effective mesh size. For reference, Figs. 7a
and 7b include the convergence plots of discretization errors
computed with the CC-EG scheme that uses gradients evaluated at
each cell from themanufactured solution. TheCC-EGplots represent
the best possible second-order convergence, which can be achieved
with a second-order CC formulation on given grids. Close proximity

of the actual and the ideal second-order discretization errors indicates
that the accuracy of the tested schemes is nearly optimal.

D. Convergence of Defect-Correction Iterations

On grids of type (I), the NC schemes and the CC-NN scheme
correspond to the Frommdiscretization of convection equation (1).A
detailed study ofDCI for the Frommdiscretization onCartesian grids
has been reported in [16]. The study concludes that the error
evolution can be divided into three stages: initial convergence,
transition, and asymptotic convergence. Initial convergence is typ-
ically fast for random initial solutions; the transition convergence
slows down, and the asymptotic convergence is fast again. The
number of iterations within the transition region can grow slightly on
finer grids. Asymptotic convergence rates do not deteriorate on finer
grids. Convergence of DCIs on representative isotropic grids of
types (IIIp) and (IVp) with 652 nodes is illustrated in Fig. 8.
Convergence plots follow the pattern predicted in [16].

Asymptotic convergence rates on grids of each type is sys-
tematically studied by performing stochastic tests on 172 grids
generated on the unit square. The spectral radius of the DCI matrix
serves as the estimate of the asymptotic convergence rate. The
spectral radius is computed on 32 independently generated grids for
32 representative flow directions. The following conclusions have
been reached: DCIs converge fast for all schemes on unperturbed
grids of types (I)–(IV) and on perturbed quadrilateral grids of
type (Ip). The asymptotic rates for the CC-FA-ULSQ, CC-FA-
WLSQ, CC-SA, CC-NA, and CC-NA-CLIP schemes are fast (better
than 0.4) on all grids, independent of grid type. The asymptotic rates
for the NC-ULSQ andNC-WLSQ schemes are around 0.5. Note that
reported problems with the stability of DCIs for the NC-WLSQ
schemes [17] and for the CC-NA schemewithout clipping [8] are not
observed on these isotropic grids.
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The DCIs may diverge for the CC-NN scheme on grids of
type (IIIp) and (IVp). The CC-NN convergence rate is strongly
dependent on a specific combination of local grid geometry and flow
direction; many stochastic tests are required to observe divergence in
actual computations. Figure 9 shows the histograms of the spectral
radius on grids of type (IIIp) for the CC-NN, CC-FA-ULSQ, andCC-
SA schemes. The spectral radii of the CC-FA-ULSQ and CC-SA
schemes are small for all cases. The spectral radii of the CC-NN
scheme are much larger. CC-NN spectral radii larger than 0.9 have
been observed in 171 of the 1024 stochastic tests; one divergence
case (a spectral radius larger than one) has occurred.

VII. Class (B): Anisotropic Grids
in Rectangular Geometry

A. Grid Specification

In this section, FVD schemes are studied on stretched grids
generated on rectangular domains. Figure 10 shows an example grid
of type (IIIp) with the maximal aspect ratioA� 103. A sequence of
consistently refined stretched grids is generated on the rectangle
x; y 2 �0; 1� 
 �0; 0:5�� � in the following three steps:
1) A background regular rectangular grid with N � Nx 	 1
�
Ny 	 1
� �

� nodes and a uniform horizontal mesh spacing hx � 1=Nx
is stretched in the vertical direction toward the horizontal line
y� 0:25. The y coordinates of the horizontal grid lines in the top half
of the domain are defined as

yNy=2	1 � 0:25; yj � yj�1 	 ĥy�j�� Ny=2	1�� �;

j�
Ny
2
	 2; . . . ; Ny; Ny 	 1

(17)

Here, ĥy � hx=A is the minimal vertical mesh spacing;A� 103 is a
fixed maximal aspect ratio; and � is a stretching factor, which is
found from the condition yNy	1 � 0:5. The stretching in the bottom

half of the domain is defined analogously.
2) Irregularities are introduced by random shifts of interior nodes

in the vertical and horizontal directions. The vertical shift is defined

as�yj � 1
4
�min hj�1y ; hjy

� �
, where� is a randomnumber between�1

and 1, and hj�1y and hjy are vertical mesh spacings on the background
stretched mesh around the grid node. The horizontal shift is
introduced analogously, �xi � 1

4
�hx. With these random node

perturbations, all perturbed quadrilateral cells are convex.
3) Each perturbed quadrilateral is randomly triangulated (or not

triangulated), depending on the grid type.

B. Gradient Reconstruction Accuracy

A recent study [18] assessed the accuracy of gradient approx-
imations on various irregular grids with a high aspect ratio
A� hx=hy � 1. The study indicates that, for rectangular geom-
etries and functions predominantly varying in the direction of small
mesh spacing (y direction here), gradient reconstruction is accurate,
providing small relative error converging with at least first order in
consistent refinement on grids of all types. For manufactured
solutions significantly varying in the direction of largermesh spacing
(x direction), the gradient reconstruction may produce extremely
large O Ahx� � relative errors affecting the accuracy of the
y-directional gradient component. Figure 11 shows examples of
first-order-accurate gradient approximations that exhibit large
relative errors on high-aspect-ratio grids of type (III).

Evaluation of gradient reconstruction accuracy is performed with
the methodology of downscaling [4,7]. The computational tests are
performed on a sequence of downscaled narrow domainsL 
 L=A� �
centered at the focal point x; y� 0:3; 0:5� �� �. The scaleL changes as
L� 2�n, n� 0; . . . ; 8, and the considered aspect ratios areA� 106

and A� 103; the latter corresponds to the highest aspect ratio
observed at the central line of the stretched grid shown in Fig. 10. On
each domain, an independent high-aspect-ratio random grid of
type (III) with 92 nodes is generated. The grid aspect ratio is fixed as
A on all scales. The gradient reconstruction accuracy is measured at
the interior control volumes. The NC-WLSQ and CC-FA-WLSQ
schemes provide accurate gradients independent of the aspect ratio
A; the relative errors of gradient reconstructions provided by all other
tested schemes are several orders of magnitude larger and directly
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Fig. 10 Perturbed random triangular stretched grid with 17 � 65
nodes.
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proportional to A. All methods converge with first order in grid
refinement.

A summary of the results concerned with gradient accuracy on
anisotropic grids is presented in Table 5. Only the NC-WLSQ
scheme provides gradient reconstruction accuracy on all unperturbed
grids. All considered gradient reconstruction methods may generate
large relative errors on perturbed grids of types (Ip)–(IVp). The
WLSQ method is ineffective on perturbed grids, because all stencil
points can be essentially equidistant from the stencil center. Such
situations occur more frequently for CC schemes. All CC schemes
may generate large gradient errors, even on unperturbed mixed-
element grids of type (IV). The CC-NN, CC-NA, and CC-FA-ULSQ
methods may also have large relative errors on unperturbed random
triangular grids of type (III); however, the CC-FA-WLSQ method
always provides accurate gradients on these grids.

C. Convergence of Discretization Errors

A poor gradient reconstruction accuracy does not necessarily
imply large discretization errors, and accurate gradients do not

guarantee small discretization errors. To illustrate these properties,
Fig. 12 shows discretization and gradient errors observed in sto-
chastic tests performed on stretched grids of type (IIIp) with small
random node perturbation. The perturbations are limited by 1

4
hy in

each dimension, where hy is the local vertical mesh spacing. The
manufactured solution is U� sin��x	 2�y�. The convection
direction is a� 1; 0� �. Figure 12a shows the L1 norm of dis-
cretizations errors for the NC-WLSQ and CC-FA-WLSQ schemes.
For comparison, the L1 norms of discretization errors for the NC-
ULSQ scheme and for the ideal CC scheme (CC-EG) using exact
gradients evaluated from the manufactured solution are also shown.
The plot symbols indicate the mean errors, and bars indicate the
maximum and minimum errors observed on 10 grids independently
generated for each scale. Figure 12b shows convergence of relative
gradient errors on the same grids. In agreement with results collected
in Table 5, theNC-WLSQ andCC-FA-WLSQ schemes on such grids
reconstruct gradients with small relative errors; conversely, the
relative gradient errors of the NC-ULSQ scheme are large.

The accurate solutions obtained with the NC-ULSQ scheme, in
spite of large relative gradient errors, are explained by the nature of
the errors. The O Ahx� � gradient errors may occur on high-aspect-
ratio grids and affect the y-gradient component aligned with the
direction of small mesh spacing. On such grids, the y coordinates of
the flux-reconstruction locations differ from the y coordinate of the
control-volume center by O hy

� �
. Thus, the errors in flux recon-

struction caused by the inaccurate y-gradient component are
O Ahxhy �O h2x

� �� �
, comparable with other errors occurring in the

FVD scheme, and sufficient to enable the second-order convergence
of discretization errors.

The large and erratic discretization errors of the NC-WLSQ and
CC-FA-WLSQ schemes are explained by random occurrences of
unstable patterns characteristic for FVD schemes with the WLSQ
gradient reconstruction. With these patterns, the main-diagonal
coefficients of the FVD scheme may become negative. This
instability is analyzed in Appendix B. Note that some coarse grids

Table 5 Relative error of gradient reconstruction on anisotropic

irregular grids for solutions with a significant variation in the

x direction of larger mesh spacing

Grid types

(I) (II) (III) (IV) (Ip)–(IVp)

NC-ULSQ O h2x
� �

O h2x
� �

O Ahx� � O Ahx� � O Ahx� �
NC-WLSQ O h2x

� �
O h2x
� �

O hx� � O hx� � O Ahx� �
CC-SA O h2x

� �
O h2x
� �

O Ahx� � O Ahx� � O Ahx� �
CC-NN O h2x

� �
O h2x
� �

O Ahx� � O Ahx� � O Ahx� �
CC-FA-ULSQ O h2x

� �
O h2x
� �

O Ahx� � O Ahx� � O Ahx� �
CC-FA-WLSQ O h2x

� �
O h2x
� �

O hx� � O Ahx� � O Ahx� �
CC-NA O h2x

� �
O hx� � O Ahx� � O Ahx� � O Ahx� �
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Fig. 12 Convergence of discretization and gradient errors on stretched grids of type (IIIp) with small node perturbations.
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Fig. 13 Two 172 grids, withA � 1000 representing families of grids of type (Ip) with small and large node perturbations.
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may not contain unstable patterns, leading to discretization errors
comparable with the errors of the NC-ULSQ and CC-EG schemes,
and that the probability and severity of unstable patterns on the tested
grids is lower for CC schemes.

To illustrate the effect of this instability on discretization errors in a
simpler setting, stochastic tests have been performed for the NC-
WLSQ scheme on a narrow domain �0; 1� 
 �0; 0:001� with the
manufactured solution U� sin �x	 2000�y� �. Two families of
anisotropic (A� 1000), irregular, quadrilateral grids are derived
from Cartesian grids with 92, 172, 332, 652, and 1292 nodes. First-
family grids are derived by a small random shift of the x coordinate of
each Cartesian-grid node, in the range of 2�hy, where � 2 ��1; 1� is a
uniformly distributed random number. Second-family grids are
derived by a larger shift of the x coordinate of each Cartesian-grid
node, in the range of �hx=3, and the random parameter � at vertically
neighboring nodes is required to differ by at least 0.2. The latter
requirement on the � variation is added to avoid occurrences of
negative diagonal coefficients in the residual operator. Representa-
tive grids are shown in Figs. 13a and 13b. The grid from the first
family appears unperturbed, while the grid of the second family is
obviously strongly irregular. However, the grids of the first family are
prone to negative main-diagonal coefficients.

The convergence of the L1 norms of the discretization errors is
shown in Fig. 14. The symbols indicate the mean errors, and bars
indicate the maximum and minimum errors observed on ten grids
independently generated for each scale. For the first grid family, the

discretization errors do not decrease with grid refinement. In fact,
the L1 norm of the errors is growing. For the second family, the
discretization errors converge with first order in any norm, as
expected for an edge-based NC scheme on irregular quadrilateral
grids.

Second-order-accurate solutions have been previously reported
[3,19] on grids with large gradient reconstruction errors. Here,
similar results are observed for CC and NC FVD schemes for
constant-coefficient convection. Convergence histories of the L1

norms of discretization errors for the manufactured solution U�
sin �x	 2�y� � on a sequence of consistently refined stretched grids
of types (IIIp) and (IVp) are shown in Fig. 15. The convection

direction is a� �cos 7�
16
; sin 7�

16
�

� �� �
. Grids with large node pertur-

bations, specified in Sec. VII.A, are used. The tests have been
performed stochastically, but only small deviations of the error norms
have been observed on different grids of the same scale. Therefore,
only one representative norm is shown.

On grids of type (IIIp), all discretization errors converge with
second order. Note that, from the convergence results reported in
Appendix A, the discretization-error convergence order for the CC-
NA-CLIP scheme is expected to deteriorate to first order on finer
grids. The NC-ULSQ solutions converge with first order on grids of
type (IVp), as predicted [4,7]. Discretization errors of all CC schemes
converge with second order and are close to each other and to the
ideal discretization errors of the CC-EG scheme.

D. Convergence of Defect-Correction Iterations

Similar to the class (A) stochastic tests reported in Sec. VI, theDCI
convergence on anisotropic grids is evaluated on 172 grids
stochastically generated on a sequence of rectangular domains
�0; 1� 
 �0; 1A�, with aspect ratios varying asA� 1, 10, 100, and 1000.

For each combination of scheme, grid type, and aspect ratio, the
spectral radius of the DCI matrix is computed on 32 independently
generated grids for 32 representative flow directions. The flow
directions are horizontally inclined, with inclination angles (i.e.,
angles between the flow directions and the positive x direction)
varying within the intervals �� �

2A ;
�
2A� and �� � �

2A ; �	 �
2A�. This

range of flow directions is chosen to expose the worst possible
convergence rates. The rates observed for other flow directions are
typically much better.

The following observations have been made: DCIs converge fast
for all schemes on unperturbed grids of types (I)–(IV) and on
perturbed quadrilateral grids of type (Ip). The asymptotic rates for the
NC-ULSQ, CC-FA-ULSQ, CC-NA, and CC-NA-CLIP schemes are
fast (0.5 or better) on all grids, independent of grid type and aspect
ratio. The rates of the CC-SA scheme are somewhat slower (but still
noworse than 0.8) on perturbed high-aspect-ratio grids of types (IIIp)
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and (IVp). For certain combinations of local geometry and flow
direction, DCIs for the CC-NN scheme may diverge on grids of
types (IIIp) and (IVp). The iterations for the NC-WLSQ and CC-FA-
WLSQ schemes diverge on high-aspect-ratio (A 
 100) grids of
types (IIp), (IIIp), and (IVp). Somewhat surprisingly, for this
rectangular geometry, the CC-NA scheme converges without
clipping, even though the grids are highly irregular.

Figure 16 shows histograms of the spectral radius distributions for
the CC-NN, CC-FA-ULSQ, and CC-SA schemes on grids of
type (IIIp) with an aspect ratio ofA� 100 and horizontally inclined
flow directions. Many tests for the CC-NN scheme exhibit slow DCI
convergence, and divergence has been observed in 13 (out of 1024)
stochastic tests. The DCI convergence of the CC-FA-ULSQ scheme
is always better than 0.33. For the CC-SA scheme, the largest
observed DCI spectral radius is 0.8. Only seven tests showed the
spectral radius larger than 0.6; only three of them showed the spectral
radius larger than 0.7.

VIII. Class (C): Grids with Curvature
and High Aspect Ratio

A. Grid Specification

In this section, we discuss FVD schemes on grids with curvature
and high aspect ratio. The grid nodes are generated from a cylindrical
mapping, where r; �� � denote polar coordinates with spacings of hr
and h�, respectively. The grid aspect ratio is defined as the ratio of
mesh sizes in the circumferential and the radial directions,
A� Rh�=hr, where R is the radius of curvature.

A measure of the curvature-induced mesh deformation is �,
defined as

�� R�1 � cos h��hr� � � Rh
2
�

2hr
�A

h�
2

(18)

The following assumptions are made about the range of parameters:
R� 1,A� 1, and �hr � 1, which implies that both hr and h� are
small. For a given value of A, the parameter � may vary: �� 1
indicates meshes that are locally (almost) undeformed. As a practical

matter, grids with �< 0:2 can be considered as nominally
noncurved. In a mesh refinement that keeps A fixed, ��O Ah�� �
asymptotes to zero. This property implies that on fine enough grids
with a fixed curvature and aspect ratio, the discretization error
convergence is expected to be the same as on similar grids generated
on rectangular domains with no curvature.

Four basic types of 2-D grids are studied in the cylindrical
geometry. Unlike the computational grids used in the rectangular
geometry, random node perturbation is not applied to high-� grids,
because even small perturbations in the circumferential direction
may lead to nonphysical control volumes.

Computational grids used in the grid-refinement study are radially
stretched grids with a radial extent of 1 � r � 1:2 and an angular
extent of 20� with a fixed maximal aspect ratioA� 1000. The grids
have four times more cells in the radial direction than in the
circumferential direction. The maximum value of � changes
approximately as �� 22; 11; 5:5; � � �. The corresponding grid
stretching ratios change as �� 1:25; 1:11; 1:06; � � �. Representative
grids of types (III) and (IV) are shown in Fig. 17.

B. Accuracy of Gradient Approximation

Our main interest is solutions varying predominantly in the radial
direction on grids with �� 1, corresponding to meshes with large
curvature-induced deformation. Computations and analyses
reported earlier [17,19,20] concluded that the ULSQ gradient
approximation is zeroth-order accurate for such solutions on grids
with high �. The errors of gradient reconstruction for the
manufactured solution U� sin 5�r� � on high-� grids of types (I)–
(IV) are summarized in Table 6. The approximate-mapping method
described in Sec. III.C enables accurate gradient reconstruction. The
NC-WLSQ and all AM schemes reconstruct accurate gradients on
grids of all types. All other schemes show large O 1� � errors on
mixed-element grids of type (IV). The CC-FA-WLSQ provides
accurate gradient reconstruction on grids of type (III). Schemes using
ULSQ gradient reconstruction in Cartesian coordinates produce
large gradient errors, even on regular grids.
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For illustration, Fig. 18 shows the relative accuracy of gradients
reconstructed on grids of type (IV). The erratic convergence and
large gradient errors of the CC-NA scheme are explained by NA
degeneration on high-� mixed-element grids. On these grids, there
are local geometries where the nodal solution is averaged from four
neighboring cells. The four cell centers involved in such averaging
may be located on a straight line, thus leading to degeneration. The
sketch in Fig. 19 illustrates this phenomenon. The topology of
the sketch (two quadrilaterals on top of two triangles) is identical to
the topology causing the degradation on high-�mixed-element grids
generated by the method of advancing layers. Note that such
degradation cannot be realized on single-element [types (I), (II), or
(III)] and/or low-� advancing-layer grids.

C. Discretization Error Convergence

Convergence of L1 norms of discretization errors of FVD
schemes,with andwithout approximatemapping, is shown in Fig. 20
for grids of type (III) and for the manufactured solution U�
sin 5�r� � and the convection direction a� �cos 7�

16
; sin 7�

16
�

� �� �
. All

discretization errors converge with the second order. The level of
discretization errors obtained by the schemes with O 1� � error in the
gradient reconstruction is similar to the level obtained by the schemes
with either approximate mapping or exact gradients. Indeed, anO 1� �
error is associated only with the radial component of the gradient. If
the face center location is shifted from the control-volume center in
the purely radial direction, then the error in flux reconstruction is
O hr� �. If both circumferential and radial shifts are involved, then the
radial shift is O �hr �O h2�

� �� �
at most. On high-� grids, hr � h2�.

Therefore, the maximum error in the flux reconstruction is bounded
by O h2�

� �
.

On unperturbed grids of types (I)–(IV), the level of discretization
errors on grids with the same number of degrees of freedom varies
significantly, depending on the locations of the data points with
respect to the manufactured solution. This property is illustrated in
Fig. 21, where the L1 norms of discretization errors of the CC-NN-
AM, CC-EG, and NC-ULSQ-AM schemes are shown for the
stretched grids of type (I), horizontal convection, a� 1; 0� �, and
three manufactured solutions. Excluding boundary effects, the
number of degrees of freedom on grids of type (I) is the same for CC
and NC formulations, but the locations of the data points are slightly
different. The CC errors are close to each other on fine grids in all the
tests. ForU� sin 5�r� �, the errors of the NC-ULSQ-AM scheme are
about four times smaller than CC errors; for U� sin �r� �, all errors
are about the same; and forU� sin 0:2�r� �, the CC errors are about
two times smaller than the NC errors. Note that the differences
between the CC andNC errors disappear on grids with no stretching.
The large variations between CC and NC discretization errors

Table 6 High-� grids: relative errors of gradient

reconstruction in global Cartesian coordinatesa

Grid Types

(I) (II) (III) (IV)

NC-ULSQ O 1� � O 1� � O 1� � O 1� �
NC-WLSQ O h2�

� �
O h2�
� �

O h�� � O h�� �
NC-ULSQ-AM O h2�

� �
O h2�
� �

O h�� � O h�� �
CC-NN O 1� � O 1� � O 1� � O 1� �
CC-FA-ULSQ O 1� � O 1� � O 1� � O 1� �
CC-FA-WLSQ O h2�

� �
O h�� � O h�� � O 1� �

CC-SA O 1� � O 1� � O 1� � O 1� �
CC-NA O h2�

� �
O h�� � O 1� � Degenerate

CC-NA-CLIP O h�� � O h�� � O 1� � Degenerate
CC-NN-AM O h2�

� �
O h�� � O h�� � O h�� �

CC-FA-ULSQ-AM O h2�
� �

O h�� � O h�� � O h�� �
CC-SA-AM O h2�

� �
O h�� � O h�� � O h�� �

aManufactured solution is U� sin 5�r� �.
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Fig. 18 Convergence of relative gradient errors on high-� stretched grids of type (IV) with a maximum aspect ratio of A � 1000.
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Fig. 19 Sketch of a grid leading to collinear cell centers and degradation of the NA procedure.
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observed, even on mildly stretched grids of type (I), indicate
significant accuracy gains that can be achieved with grid opti-
mization. They also indicate that the conclusion that the
discretization accuracies of good CC and NC schemes are similar
on grids with similar degrees of freedom (such a conclusion would

benefit CC schemes that typically provide more degrees of freedom
on the same grids) is not straightforward for inviscid flows. To make
such a conclusion, one should compare errors on optimized grids
with the same number of degrees of freedom; the grid optimization
should be done individually for each FVD scheme.
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Fig. 20 Convergence of discretization errors on high-� stretched grids of type (III) with a maximum aspect ratio of A � 1000.
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D. Convergence of Defect-Correction Iterations

DCI convergence rates on high-� grids are sensitive to the flow
direction, improving for flows aligned with the radial direction of the
strong anisotropy. In this section, the horizontal flow direction is
chosen to expose theworst-case scenario. The tests are performed on
computational domains, with the angular extent of 20� and the radial
extent of r 2 �1; 1	 L�, whereL� 0:2, 0.02, 0.002, and 0.0002. The
grids with 172 nodes correspond to �� 0:02, 0.2, 2, and 20. The
asymptotic convergence rates are computed as the spectral radius of
the corresponding DCI matrices and then confirmed in actual tests.
On irregular grids of types (III) and (IV), the tests are performed
stochastically. For each scheme and grid type, theDCI spectral radius
is computed for 30 independently generated grids.

Ranges of DCI convergence rates on grids of various types with
�� 0:02 and �� 20 are shown in Table 7. DCIs converge well for
all schemes on low-� grids. On high-� grids, DCI divergence has
been observed for theNC-WLSQandCC-NAschemes on grids of all
types. For the CC-NN and CC-FA-WLSQ schemes, divergence has
been observed on grids of types (II), (III), and (IV). DCIs for the NC-
ULSQ scheme converge slowly. Clipping was originally introduced
to stabilize convergence of the CC-NA scheme, andDCIs for theCC-
NA-CLIP scheme converge for all grids considered, demonstrating
fast rates on triangular grids of types (II) and (III). DCI convergence
dramatically improves for schemes with approximate mapping;
DCIs for the NC-ULSQ-AM and CC-NN-AM scheme converge
much better than their unmapped counterparts on the same grids.
Overall, DCI convergence rates are fast for the CC-SA, CC-FA-
ULSQ, and all approximate-mapping schemes on grids of all types;
for the CC-NA-CLIP scheme on grids of types (II) and (III); and for
the CC-NN and CC-FA-WLSQ schemes on grids of type (I).

The DCI behavior can be analyzed in a very simple setting. For
example, DCI convergence for NC FVD schemes can be considered
for a pair of interior grid nodes under the assumption that solutions in
all surrounding nodes are overspecified. Representative interior grids
of type (I) and type (II) are sketched in Fig. 22. DCIs have been
analyzed on sequences of grids corresponding to various values of �
with fixed circumferential mesh spacing and varying radial mesh
spacing. For simplicity, convection with the unit horizontal velocity
is assumed.

The variations of the spectral radius of the DCI matrix are shown
in Fig. 23. On high-� grids of both types, DCIs diverge for the NC-
WLSQ scheme, converge slowly for the NC-ULSQ scheme, and
converge fast for the NC-ULSQ-AM scheme. The DCIs are unstable
for the NC-WLSQ scheme on type (I) meshes, even though the

Table 7 Ranges of asymptotic convergence rates of DCI

on anisotropic curved gridsa

� 0.02 20

NC-ULSQ 0.43–0.48 0.8–0.98
NC-WLSQ 0.44–0.50 Diverge
NC-ULSQ-AM 0.43–0.47 0.49–0.58
CC-NN 0.45–0.52 0.13 (I), diverge (II, III, IV)
CC-FA-ULSQ 0.23–0.48 0.09–0.17
CC-FA-WLSQ 0.31–0.48 0.49 (I), diverge (II, III, IV)
CC-SA 0.26–0.48 0.11–0.18
CC-NA 0.24–0.48 Diverge
CC-NA-CLIP 0.24–0.48 0.94 (I, IV), 0.27–0.35 (II, III)
CC-NN-AM 0.45–0.52 0.45–0.52
CC-FA-ULSQ-AM 0.23–0.48 0.23–0.45
CC-SA-AM 0.23–0.48 0.32–0.48

aIf no grid type is shown, the range describes convergence rates for grids of all types.
Special cases are indicated by grid types in parentheses.
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Fig. 22 Sketch of interior grids of class (C). The unknown solutions are at nodes 1 and 2. Black bullets indicate nodes with overspecified solutions, and

dashed lines indicate control volumes around nodes 1 and 2.
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Fig. 23 Asymptotic convergence rates for NC schemes.
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coefficients of NC-WLSQ gradient reconstruction are very nearly
the same as the coefficients of the NC-ULSQ-AM gradient recon-
struction. The main cause of the divergence is the interior-state
interpolation in the nearly circumferential-edge directions. On high-
� grids, the radial coordinates of the edgemidpoints are displaced by
O �hr� � from the nodes. Within the simple setting of a type (I) grid
(Fig. 22a), such displacement results in offdiagonal terms in the
target scheme that are larger than the diagonal terms. In contrast, the
driver scheme has zero offdiagonal terms. Although not shown,
DCIs exhibit fast convergence for the target NC operator, con-
structed using either WLSQ or ULSQ gradients and approximate-
mapping interior-state interpolations. Thus, the improvements in
DCI with the mapping technique accrue mainly through the state-
variable interpolations.

IX. Conclusions

Two node-centered and six cell-centered schemes have been
compared for finite volume discretization of a constant-coefficient
convection equation as a model of inviscid flow terms. All schemes
are nominally second-order accurate and use either weighted or
unweighted least-squares minimization. The schemes have been
compared for complexity, accuracy, and convergence rates of defect-
correction iterations with a first-order driver. The cell-centered
nearest-neighbor scheme has the lowest complexity; in particular, its
stencil involves the least number of neighbors. A version of the
scheme that involves smart augmentation of the least-squares stencil
has only a moderate complexity increase. All other schemes have
larger complexity; the complexity of node-centered schemes is lower
than the complexity of cell-centered schemes with node averaging or
with full augmentation of the least-squares stencil.

Comparisons of accuracy and convergence rates of defect-
correction iterations have been made for three grid classes: class (A)
includes isotropic grids in a rectangular geometry, class (B) includes
anisotropic grids representative of adaptive-grid simulations, and
class (C) includes anisotropic advancing-layer grids representative of
high-Reynolds-number turbulent-flow simulations over a curved
body. Regular and irregular grids are considered, including mixed-
element grids and grids with random perturbations of nodes.
Computations on irregular grids have been performed stochastically.
All tests have been performed on consistently refined grids for
smooth manufactured solutions.

For the tests on grids of class (A), the following observations have
been made. The cell-centered node-averaging scheme with clipping
fails to approximate gradients and degrades solution accuracy to the
first order. As expected, the node-centered discretization errors
converge with second order on triangular and regular quadrilateral
grids and with first order on mixed-element and perturbed
quadrilateral grids. Second-order discretization errors are quantita-
tively similar on grids with the same degrees of freedom and closely
approach ideal second-order errors exhibited by the cell-centered
scheme with exact gradients. The defect-correction iterations may
diverge for the cell-centered nearest-neighbor scheme on perturbed
grids with random triangular elements.

For the tests on grids of class (B), all schemes may produce
O Ahx� � large relative errors in gradient reconstruction on perturbed
grids; here, A is the grid aspect ratio and hx is the larger mesh
spacing. Discretization errors of the schemes with weighted least-
squares gradient reconstruction diverge in grid refinement on grids
with small perturbations. For all other schemes, the errors converge
with second order and closely approach the ideal second-order errors
computed with exact-gradient reconstruction. Defect-correction
iterations may diverge for theweighted east-squares schemes and for
the cell-centered nearest-neighbor scheme and converge fast for all
other schemes.

On grids of class (C), the range of grid parameters has been chosen
to enforce significant curvature-induced grid deformations, char-
acterized by the large values of the parameter �. All tests have been
performed for manufactured solutions smoothly varying in the radial
direction only. Accurate gradients are reconstructed on all grids by
the least-squares minimizations performed in local approximate-

mapping coordinates and by the node-centered weighted least-
squares scheme. All other schemes generate O 1� � errors in gradient
reconstruction on at least some grids. The node-averaging schemes
may degenerate on mixed-element grids. All other schemes provide
second-order discretization errors. Consistent with previous obser-
vations, defect-correction iterations may diverge for the weighted
least-squares schemes and for the cell-centered node-averaging and
nearest-neighbor schemes. The asymptotic convergence for the
node-centered unweighted least-squares scheme is slow and may
stagnate. Convergence rates of defect-correction iterations for the
approximate-mapping schemes and for the cell-centered smart-
augmentation and full-augmentation schemes are fast on all grids.
Overall, the cell-centered smart-augmentation scheme is the most
attractive; it offers low complexity, accuracy comparable with that
of the exact-gradient scheme, and fast convergence of defect-
correction iterations on all grids. The cell-centered nearest-neighbor
approximate-mapping scheme is a good choice for discretization
within boundary layers on high-aspect-ratio grids generated by the
advancing-layer method. The node-centered unweighted least-
squares approximate-mapping scheme presents the best node-
centered option.

Several other observations have been made in the course of this
work:

1) Smoothness of grid metrics, such as volume and face area, is
often used as a grid quality measure, implying that a better accuracy
can be achieved on grids with smoother metrics. The examples in the
paper showed that, with robust discretization schemes, accurate
solutions can be achieved on grids with discontinuous metrics.
Moreover, metrics smoothness may be misleading when considered
in isolation from specific schemes. In particular, it was shown that the
discretization accuracy of the node-centered weighted least-squares
scheme is much better on strongly irregular grids with discontinuous
metrics than on certain almost-regular grids with minimal metric
perturbations.

2) On high-aspect-ratio grids, gradient reconstruction accuracy is
neither necessary nor sufficient for obtaining design-order dis-
cretization errors. Indeed, schemes with large relative errors in
gradient reconstruction provided discretization errors comparable
with the errors of the exact-gradient scheme. This phenomenon is
explained by the specific nature of the gradient errors introduced on
high-aspect-ratio grids that typically affect only certain gradient
components and result in flux-reconstruction errors that are small
enough to enable second-order convergence of discretization errors.
On the other hand, the weighted least-squares reconstruction
provides locally accurate gradients, but the obtained schemes may
lose stability and accuracy. Note, however, that gradient accuracy is
expected to be critical for discretizations involving gradient sources,
entropy fixes, and/or gradient-based limiters.

3) In many tests, the observed discretization errors were similar on
grids with similar degrees of freedom. However, some tests
performed on stretched quadrilateral grids that provide similar
degrees of freedom for both cell-centered and node-centered
formulations showed large variations in discretization errors. These
variations have been traced to slight differences in the locations of the
degrees of freedom with respect to the manufactured solutions. This
sensitivity indicates that there is a large potential accuracy gain that
can be achieved by grid optimization. On the other hand, the
conclusion about the true relationship between the discretization
errors and degrees of freedom cannot be drawn from the tests
performed on the nonoptimized grids considered in this paper.

Appendix A: Effects of Clipping

The isotropic grid tests reported in this appendix are performed for
the CC-NA and CC-NA-CLIP schemes and demonstrate the
detrimental effects of clipping on the convergence of gradient and
discretization errors in grid refinement. Irregular triangular grids of
type (IIIp) are considered. These grids are characterized by a higher
percentage of clipped nodes; about 10% of the interior nodes are
clipped. Figure A1a shows an example of a grid of type (IIIp) with
172 nodes; nodes where clipping occurs are circled.
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Figure A1b shows that the gradients reconstructed by the CC-NA-
CLIP scheme do not approximate the exact gradients. The CC-NA
scheme provides a first-order-accurate gradient reconstruction,
which is sufficient for second-order discretization accuracy.
Figure A1c presents the convergence of the L1 norms of dis-
cretization errors. The CC-NA scheme demonstrates second-order
convergence of discretization errors, which is consistent with results
reported by Mitchell [21] for Ringleb flow. The discretization error
convergence of the CC-NA-CLIP scheme exhibits second order on
the coarse grids, but then it degrades to first order. Although not
shown, the L1 norm of discretization errors of the CC-NA-CLIP
scheme shows degradation on coarser grids in grid refinement.
Asymptotically, L1 norms of both NA schemes converge with the
same orders as the correspondingL1 norms.Note that, on gridswith a
smaller percentage of clipped nodes, convergence degradation
becomes visible only on finer grids. This may explain why such
degradation has not been reported for practical computations.

Appendix B: Instability of Weighted Least-Squares
Schemes on Grids with Small Perturbations

As shown in Secs. VII andVIII,WLSQmethods improve gradient
reconstruction accuracy on high-aspect-ratio unperturbed grids of
types (I)–(IV). These grids have well-defined lines aligned with the
direction of strong anisotropy. The analysis presented in this section

shows that FVD schemes using the WLSQ gradient reconstruction
become unstablewith small perturbations of this grid alignment. This
instability manifests itself in the appearance of large negative
coefficients on themain diagonal of the residual operator. As a result,
DCIs diverge and discretization errors behave erratically in grid
refinement.

For illustration, we consider the NC-WLSQ scheme on a
quadrilateral grid with a uniformly high aspect ratio A� hx=hy,
where hx and hy are horizontal and vertical mesh sizes, respectively.
Small periodic perturbations are introduced to every other node on
every second horizontal line; the nodes are shifted left by a distance
of �s. A sketch of a perturbed grid is shown in Fig. B1. The goal of the
analysis is to compute the contribution to the residual at node 0 from
the solution at the same node: the main-diagonal coefficient of the
residual operator. For simplicity, the convection velocity is taken as
a� 1; 0� �.

First, gradients at nodes 0 and 1 are reconstructed with theWLSQ
method. For node 0, assuming the node is at the origin, the
coordinates xk and yk of all stencil nodes are given in TableB1,where
the subindex is a node indicator.

The linear reconstruction Ur x; y� � of a general function U x; y� �
over the control volume around node 0 is defined as

Ur � U0 	 ax	 by (B1)
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Fig. A1 Accuracy of CC-NA schemes on isotropic, irregular, and triangular grids of type (IIIp). Manufactured solution is U �� cos�2�x � �y�.
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whereU0 �U 0; 0� �. The components of the reconstructed gradient,
rrU� a; bT� �, are found by minimizing the sum of the squares of
the (weighted) differences between the actual function and the linear
fit at the stencil points:

X
k

��k Ur
k � Uk�2 ! min

� �
(B2)

where �k are weights:

�k �
1����������������

x2k 	 y2k
p (B3)

The gradient reconstructed at node 0 is

a0 �
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Analogously, the gradient reconstructed at node 1 is

a1 �
1
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For the chosen convection direction, the FVD residual operator on
the control volume around node 0 is formed as

hy
V
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U0 	 a0
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where V � hxhy. The coefficient of U0 is
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Assuming A� 1 and 0< �s� hx, the last term in the brackets is
negligibly small compared with the other terms and may be ignored.
In particular, if �s� hy, the leading part of the coefficient would be

1

hx

�
7

12
�A

6

�
(B8)

which is a large negative number on gridswith a high aspect ratio. All
WLSQ schemes are prone to this type of instability, including CC
discretizations.
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